

The use of a requirements modeling language for industrial applications

Brian Berenbach
brian.berenbach@siemens.com
Presented at NYSPIN OCTOBER 11, 2012

Outline of the talk

- ☐ Introduction to Corporate Technology
- □ Four stories of *industrial experience* in requirements engineering or why we need the Unified Requirements Modeling Language (URML)
- □Overview of the URML
- □ Early feedback regarding use of the URML on REAL projects
- □A demonstration (Time Permitting)
- □Questions & answers

Outline of the talk

- ☐ Introduction to Corporate Technology
- □ Four stories of *industrial experience* in requirements engineering or why we need the Unified Requirements Modeling Language (URML)
- □Overview of the URML
- □ Early feedback regarding use of the URML on REAL projects
- □A demonstration (Time Permitting)
- □Questions & answers

Siemens is organized in 4 Sectors: "Industry", "Energy", "Healthcare" and "Infrastructure & Cities"

Siemens: Facts and Figures

- **Key figures FY 2011**
- **Sales**: ~€ 74 bn
- Locations: in 190 countries
- **Employees:** ~402,000
- **R&D expenses:** ~€ 4 bn
- **R&D** engineers: ~28,600
- **Inventions:** ~8,600
- Active patents: ~53,300

- 1) Sales in FY 2011 estimated for the new organizational setup with 4 Sectors
- 2) Not included in sales figure; Siemens announced its intention to publicly list Osram

Corporate Technology has 3 missions

Corporate Technology: Mission, roles and basic principles

CT Research and Technology Center: ~1,650 experts in 13 technology fields

CT Research and Technology Center (RTC)

- Software quality
- Architectural design

HQ: Munich RGs: 7

- SW / System integration
- Middleware, cloud
- Enterprise IT

HQ: Munich **RGs**: 10

- Security architecture & lifecycle
- CERT services
- Access control

HQ: Munich **RGs**: 8

Business Analytics and Monitoring

- Decision support
- Knowledge discoverv
- Condition monitorina

HQ: Munich **RGs**: 8

Automation and Control

- Control systems
- Engineering
- Simulation & Optimization

HQ: Princeton, US **RGs**: 10

Networks & Communication

- Wireless & industrial networks
- Internet of things

HQ: Munich **RGs**: 6

- User Interface Design
- PLM process support
- Svstems Engineering **HQ:** Munich

RGs: 11

ualization

- Computer vision
- Image processing & analytics

HQ: Princeton, US **RGs**: 12

- Materials development & processing
- Analytics

HQ: Berlin **RGs**: 8

_

- Electronic design & manufacturing processes
- Assembly & test

HQ: Munich **RGs**: 8

- Sensor devices & system integration
- Inspection & test

HQ: Erlangen **RGs**: 9

- Power electronics & management
- Mechatronic systems
- Mechanical assembly

HQ: Erlangen **RGs**: 9

- Energy conversion & storage
- Environmental technologies
- Oil & gas

HQ: Erlangen **RGs**: 9

© Siemens AG 2012. All rights reserved

Outline of the talk

- ☐ Introduction to Corporate Technology
- ☐Four stories of *industrial experience* in requirements engineering or why we need the Unified Requirements Modeling Language (URML)
- □Overview of the URML
- □ Early feedback regarding use of the URML on REAL projects
- □A demonstration (Time Permitting)
- □Questions & answers

Industrial Experience Stories

- 1. Oh, you have a PRODUCT LINE!
- 2. Why is this feature in the product? What are we really trying to accomplish??? And where are the requirements?
- 3. Hazard analysis (and threat modeling) early on
- 4. "I can't tell the processes from the use cases"

What they got in a modeling session

Analysis of Story 1

What they needed

Story two – stakeholder goals

What they had from the transcript of a meeting

Joe:

We need <u>high market share</u>
We need lower lifecycle costs than today

Mary:

We really need a <u>competitive feature set</u>
And it has to <u>cost less than \$150K per unit</u>
And we need a reduction in complexity

John:

Yes, but we need packaged options and high reliability

Tom

Maybe we want a reduction in complexity compared to the current unit

Marketing Manager:

These are all great ideas. let's go with them.

Engineering: Huh???

Analysis of Story 2

SIEMENS

What they needed!

Analysis of Story 2 Where are the requirements?

What the designers wanted to see

Story 3 – Identification of hazards and threats

Phlebotomy - ORDER OF DRAW

Blood collection tubes must be drawn in a specific order to avoid cross-contamination of additives between tubes. The recommended order of draw for plastic vacutainer tubes is:

First - blood culture bottle or tube (yellow or yellow-black top)

Second - coagulation tube (light blue top). If just a routine coagulation assay is the only test ordered, then a single light blue top tube may be drawn. If there is a concern regarding contamination by tissue fluids or thromboplastins, then one may draw a non-additive tube first, and then the light blue top tube.

Third - non-additive tube (red top)

Last draw - additive tubes in this order:

SST (red-gray or gold top). Contains a gel separator and clot activator.

Sodium heparin (dark green top)

PST (light green top). Contains lithium heparin anticoagulant and a gel separator.

EDTA (lavender top)

ACDA or ACDB (pale yellow top). Contains acid citrate dextrose.

Oxalate/fluoride (light gray top)

NOTE: Tubes with additives must be thoroughly mixed. Erroneous test results may be obtained when the blood is not thoroughly mixed with the additive

SIEMENS

Analysis of Story 3

What the designers wanted to see

Use Case vs. Process

Use Case vs. Process

SIEMENS

Analysis of Story 4

Maybe this?

SIEMENS

Why not address all these requirements in one graphical language?

Outline of the talk

- ☐ Introduction to Corporate Technology
- □ Four stories of *industrial experience* in requirements engineering or why we need the Unified Requirements Modeling Language (URML)
- □Overview of the URML
- □ Early feedback regarding use of the URML on REAL projects
- ☐A demonstration (Time Permitting)
- □Questions & answers

Unified Requirements Modeling Language (URML)

- ✓ Abstract Syntax
- ✓Incorporation of concepts
- √ Well-formedness rules (in progress)
- √ Concrete Syntax
- ✓ Icon-based
- ✓ Semantics
- ✓Informal (as in the UML).

Simplified Abstract Syntax Meta-Model

Focus of the URML

The Unified Requirements Modeling Language permits a unified, holistic view of systems

Visual Notation (Excerpt)

SIEMENS

Variants of Hazard + Quality Requirement Icons

The visual notation has two kinds of overlays:

- 1) A type-specific overlay (e.g. Efficiency Quality Requirement)
- 2) Attribute-specific overlay (e.g. Requirement that is a regulatory requirement)

Outline of the talk

- ☐ Introduction to Corporate Technology
- □ Four stories of *industrial experience* in requirements engineering or why we need the Unified Requirements Modeling Language (URML)
- □Overview of the URML
- □ Early feedback regarding use of the URML on REAL projects
- □A demonstration (Time Permitting)
- □Questions & answers

Evaluation Results

- ✓ Positive Feedback
- -Goals, features, and requirements in the the same tool
 - Design tradeoffs
- Product Lines, Features, and requirements in the same tool
 - Product map with requirements traceability
- -Processes and dangers in the same tool
 - Process-related danger
- ✓ Issues
- Bugs in meta-model in general (fixed now)
- Clear guidelines missing for an interface between the URML and design-oriented languages (UML, SysML)
- -Implementation UML Profile-based (with deficiencies of the UML)

"For the first time I can see where there are so many issues with this step of the process!" – a comment by a medical practitioner on seeing the hazards associated with the process step.

Solves the tracing problem

Tracing can be difficult with multiple tools

Conclusion

1.It Works

2. So why isn't everyone using it?

Questions?